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ABSTRACT
Triple-negative breast cancers (TNBCs) are one of the most aggressive and complex forms of cancers in
women. TNBCs are commonly known for their complex heterogeneity and poor prognosis. The present
work aimed to develop a predictive 2D and 3D quantitative structure–activity relationship (QSAR) models
against metastatic TNBC cell line. The 2D-QSAR was based on multiple linear regression analysis and vali-
dated by Leave-One-Out (LOO) and external test set prediction approach. QSAR model presented regres-
sion coefficient values for training set (r2), LOO-based internal regression (q2) and external test set
regression (pred_r2) which are 0.84, 0.82 and 0.75, respectively. Five properties, Epsilon4 (electronegativity),
ChiV3cluster (valence molecular connectivity index), chi3chain (retention index for three-membered ring),
TNN5 (nitrogen atoms separated through 5 bond distance) and nitrogen counts, were identified as import-
ant structural features responsible for anticancer activity of MDA-MB-231 inhibitors. Five novel derivatives
of glycyrrhetinic acid (GA) named GA-1, GA-2, GA-3, GA-4 and GA-5 were semi-synthesised and screened
through the QSAR model. Further, in vitro activities of the derivatives were analysed against human TNBC
cell line, MDA-MB-231. The result showed that GA-1 exhibits improved cytotoxic activity to that of parent
compound (GA). Further, atomic property field (APF)-based 3D-QSAR and scoring recognise C-30 carboxylic
group of GA-1 as major influential factor for its anticancer activity. The significance of C-30 carboxylic
group in GA derivatives was also confirmed by molecular docking study against cancer target glyoxalase-I.
Finally, the oral bioavailability and toxicity of GA-1 were assessed by computational ADMET studies.
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Introduction

Breast cancer is the most frequently diagnosed cancer and
the second leading cause of female deaths worldwide. In
majority of cases, mortality is due to its metastatic dissemin-
ation to distant sites (Polyak, 2011). Despite the enormous
medical importance of metastasis, its molecular underpinning
remains insufficiently understood because of its intertumour
and intratumour heterogeneity (Bianchini et al., 2016;
Ovcaricek, Frkovic, Matos, Mozina, & Borstnar, 2011). Breast
carcinomas, demarcated as triple-negative breast cancers
(TNBC), are highly aggressive and do not express progester-
one receptor (PR), estrogen receptor (ER) and human epider-
mal growth factor receptor2 (HER2) (Thike et al., 2010).
Consequently, it is resistant to hormone-targeted therapies,
and only 20% of TNBC respond well to standard chemother-
apy using anthracycline-based (doxorubicin plus cyclophos-
phamide) or paclitaxel chemotherapy, etc. (Zardavas, Baselga,
& Piccart, 2013). Thus, in current breast cancer research,
developing improved treatment for metastatic TNBC is one
of the highest priorities. Several researches have been carried
out to understand metastatic TNBC cells sensitivity towards
plant-based different chemical scaffolds (Iqbal et al., 2018).
Recent prognosis works on TNBC focusing on targets PARP1,
mTOR, TGF-b from Notch signalling, Wnt/b-catenin and
Hedgehog pathways (Badve et al., 2011; Jamdade et al.,
2015; Wein et al., 2018).

Glycyrrhiza glabra, an Indian medicinal herb, also known
as licorice, contains biologically active triterpenoid glycyr-
rhizic acid (GL). GL is a diglucopyranosiduronic acid of the
glycyrrhetinic acid (GA) (Tewari et al., 2017). Substantial
research has been carried out on human liver metabolism of
GL. Kr€ahenb€uhl, Hasler, and Krapf (1994), revealed GL trans-
formed into its aglycone form GA through intestinal bacteria
when orally administered. In cancer research, GA is mostly
explored for its activity against human hepatocellular carcin-
oma (HCC) cells since an earlier work revealed the existence
of GA receptor on rat and human hepatocytes surface
(Negishi et al., 1991). It has been reported that anti-HCC
response of GA is mediated through inhibition of immune
response by regulating T cells, cell cycle arrest, induction of
cell apoptosis and autophagy (Cai et al., 2017). Evidently, GA
has been identified to exhibit remarkable anticancer activ-
ities. Therefore, over the past decade, GA has been serving
as a good structural template for more potent anticancer
agents. Many groups have studied the effects of structural
modification in GA on the cytotoxicity of various human can-
cer cell lines (Xu et al., 2017). Despite these capabilities, the
mechanism of action of GA in metastatic TNBC has not been
investigated so far.

Notably, our earlier work on GA and its novel derivatives
against breast cancer MCF-7 displayed good anticancer
potency (Yadav, Kalani, Khan, & Srivastava, 2013; Yadav et al.,
2014). Therefore, the present work was designed to combat
metastatic TNBC cell lines using biological effects of GA and
its novel derivatives. The work includes chemical feature
identification of metastatic TNBC cell inhibitors through
regression-based quantitative structure–activity relationship
(QSAR) model (Yadav & Khan, 2013). Further, five novel GA

derivatives were semi-synthesised and screened through the
prepared QSAR model. The derivatives were further investi-
gated for in vitro activity in metastatic breast cancer cell line
MDA-MB-231. Subsequently, atomic property field (APF)-
based 3D-QSAR model was generated to explore APF and
structure–activity relationship of synthesised derivatives. The
anticancer mechanism of action of GA derivatives on TNBC
drug targets was explored through molecular docking stud-
ies. In TNBC cells, enzyme Glyoxalase-I (GLO-I) inhibition
leads to increased level of alpha-oxoaldehydes that cause
increase in apoptosis and suppress migration and invasion of
metastatic breast cancer. Therefore, GLO-I is considered as
one of the promising TNBC targets. Here, molecular docking
and 3D-QSAR modelling were performed considering
Glyoxalase-I as a promising TNBC drug target. The oral bio-
availability and possible toxicity were also assessed through
computational ADMET (absorption, distribution, metabolism,
excretion and toxicity) analysis.

Materials and method

Computational 2D-QSAR modelling for GA
derivative designing

Dataset collection and structure preparation
The modelling set comprises 144 compounds, metastatic
TNBC cell line, MDA-MB-231 inhibitors (Tables S1 and S2,
training and test set compounds, respectively,
Supplementary materials) collected from the ChEMBL data-
base and reported literatures (Gao et al., 2014; Goldbrunner
et al., 1997; He et al., 2015; Motiwala et al., 2013; Li, Feng,
Song, Li, & Huai, 2016). The modelling set exhibits plant
product-inspired scaffolds and comprises two to five fused
ring skeletons (Table S3, Supplementary material).

The structural drawing and geometry cleaning of the
modelling set compounds were performed through
ChemBioOffice suite Ultra v12.0 (2015) software
(CambridgeSoft Corp., UK). Further, each compound was sub-
jected to energy minimisation to get optimised bond dis-
tance, bond angles and set dihedrals by applying Merck
molecular force field (MMFF). Moreover, the method adds
additional properties to the compounds including initial
potential energy, root-mean-square (RMS) gradient, MMFF
energy and minimisation criteria.

Chemical descriptors calculation
For QSAR model generation, the compounds were denoted
by structural descriptors or physicochemical properties.
Computation for descriptors was done by using VLife MDS
v4.4 (2014) software (VLife Technologies, NovaLead Pharma
Pvt. Ltd., India). Software Vlife calculates structural descrip-
tors, belonging to major classes viz., (a) physicochemical
descriptors, (b) extended topochemical descriptors and (c)
alignment-independent descriptors.
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QSAR model generation
Primarily, the dataset of 144 compounds was divided into 70%
as training set and 30% as external test set applying random
selection technique using Vlife. The PIC50 (mM) value was
assigned as dependent variable. PIC50 is a negative logarithm
of IC50 value, expressed in molar concentration. The physico-
chemical properties or structural descriptors were considered
as independent variables. Invariable descriptors with zero or
equal values were deleted. The regression coefficient for train-
ing set (100 compounds) was calculated by using Equation (1),
where yi and ŷi signify the actual and predicted PIC50 of ith

compound, respectively, whereas ymean is the average/mean
value of actual PIC50 of training set compounds

r2 ¼
P

yi�ŷ ið Þ2P
yi�ŷmean

� �2 (1)

QSAR model generation criteria and parameter used for
feature selection
The 2D-QSAR model was developed by applying multiple linear
regression (MLR) approach. A stepwise forward–backward
selection criterion was applied for feature/descriptor extraction.
Continuous multiple variable-based MLR model was generated,
step by step depending on Fischer coefficient values (F values).
The F test gives the statistical significance of the descriptor. The
Ftest in and Ftest out values were set at 4 and 3, respectively. The
predicted descriptors were identified by these stepping criteria.
The search is terminated when the addition of additional
variables is no longer needed. Before model development,
inter-correlated descriptors (correlation >0.70) were discarded.

2 D-QSAR model validation
To scrutinise the predictability of developed model, leave-
one-out (q2, LOO), external set predictions (r2pred) and r2m
matrix were calculated (Cramer III, Bunce, Patterson, & Frank,
1988; Golbraikh & Tropsha, 2002; Ojha et al., 2011). An LOO-
based cross-validated regression coefficient (q2) was calcu-
lated based on Equation (2) (Shen et al., 2002), where yi and
ŷi signify the actual and predicted PIC50 values for ith com-
pound, respectively, whereas ymean is the average/mean
value of actual PIC50 of training set compounds

q2 ¼ 1�
P

yi�ŷi
� �2P

yi � ymeanð Þ2 (2)

The regression for external test set (r2pred) was calculated by
using Equation (3) (Kier & Hall, 1977; Golbraikh & Tropsha,
2002). r2pred validate the model predictability for external
compounds and verify the model predicted result’s reliability

r2pred ¼ 1�
P

yi testð Þ�ŷi testð Þ
� �2

P
yi testð Þ � ymean testð Þð Þ2

(3)

Randomisation test
The robustness of generated model was also assessed by cal-
culating Z score values using Equation (4), where h, l and r

signify r2 of original dataset, average values of r2s for random
datasets and standard deviation for random dataset, respect-
ively. The calculated Z score should be higher than the tabu-
lated value Zc as reported by Zheng and Tropsha (2000). The
higher Z score indicates that the null hypothesis is rejected
and the model generated from the actual dataset is statistic-
ally significant

Z ¼ ðh�lÞ=r (4)

r2m matrix for QSAR model validation
The external predictability of developed model was also
checked by using r2m matrix method calculating r20, r

=2
0 , r2m, r

=2
m ,

r2m and r2m (Ojha et al., 2011). The r2m matrix is measured by
using r2 and r20, where r2 and r20 signify correlation between
observed and predicted values with and without intercept
for the regression line, respectively. Statistical parameters r20,
r=20 , r2m, r

=2
m , and r2m were computed as mentioned by Ojha,

Mitra, Das, and Roy, (2018). The equation used for r2m param-
eter calculation is given in Equation (5)

r2m ¼ r2 1�
ffiffiffiffiffiffiffiffiffiffiffi
r20�r2

q����
����

 !
(5)

Applicability domain (AD) assessment of 2D-QSAR model
A statistically validated model predicted results are consid-
ered to be reliable only when the query set compound falls
within its AD. Here, three most important criteria were
adopted to check the AD of developed model viz., (i) the
biological space cover of whole dataset, (ii) the chemical
space cover by training and test sets, and (iii) distance-based
distribution of training and test sets in structure and activity
space (Jaworska, Nikolova-Jeliazkova, & Aldenberg, 2005). A
3D principal component analysis (PCA) was applied to com-
pute the projection of chemical space of test set within train-
ing set (Adhikari et al., 2017; Amin et al., 2018). A structure
similarity-based hierarchical cluster analysis was done to
assess structure relatedness of training, test and query set
compounds (Figure S1, Supplementary material).

APF-based 3D-QSAR modelling study

An APF-based 3D-QSAR was also performed on congeneric
series of 42 GA derivatives. An APF-based 3D-QSAR thor-
oughly describes the spatial arrangement of structural fea-
tures that bestow specific activity to the molecule, since a
3D-QSAR model reliability is highly dependent upon the
structural filed alignment, Therefore, for 3D-QSAR studies, a
congeneric series of 42 GA derivatives were taken instead of
using a total of 144 compounds so as to get more homoge-
neous structure space.

A series of 42 GA derivatives with known inhibition activ-
ity against MDA-MB-231 were collected from 2D-QSAR data-
set and reported literatures (Yang et al., 2016, ; Gao, et al.,
2014). Their structures were drawn and converted to 3D ICM
object using ICM-Chemist v3.8-6a 2018 (Molsoft L.L.C., San
Diego, CA) software (Abagyan, 2018, http://www.molsoft.
com/icm-chemist-pro.html; Totrov, 2008). The set of 42 GA
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derivatives was randomly split into 37 training and 5 test
sets using DS v3.5. The crystal structure of enzyme
Glyoxalase-I (GLO-I) bound with GA (2.3 resolution) was
retrieved from protein database (PDB: 4PV5). The GLO-I-
bound conformation of GA was taken as the rigid templet
structure to which training set structures were aligned based
on their APF energy fields. The APF fields of co-crystallised
GA are depicted in Figure S5 under supplementary materials.
Afterward, for each molecule, 3D-based continuous atomic
potentials were generated and approximated based on regu-
lar space grid. These continuous potentials represent seven
physicochemical properties viz., hydrogen bond donor (blue
blob) and acceptors (red blob), sp2-hybridised carbon atoms,
molecules lipophilicity (yellow blobs), charge, molecule size
and electronegativity or positivity.

Therefore, the training set of 37 compounds can be repre-
sented by 259 descriptors. The training and test set molecules
were aligned on generated APF fields of co-crystallised GA. For
quantitative prediction of novel compound, a partial least
square (PLS)-based optimal weight distribution was assigned
to each molecule based on its APF components. The optimal
number of latent vectors for PLS was established by LOO cross-
validation on the training set. Then, the weighted contribu-
tions of each APF components were added together. For
external validation, randomly selected five compounds were
assigned predicted binding values by calculating their fit
within the combined QSAR-APF score. The model further uti-
lised to design and screen novel GA derivatives GA-1, GA-2,
GA-3, GA-4 and GA-5 based on their APF alignment.

Chemistry

Extraction and chemical synthesis
Five novel 18b-GA derivatives were designed and synthesised
modifying C-3 and C-30 positions. Figure 4(a) represents
compound preparation scheme-1, i.e. synthesis of 3-O-acyl

derivatives of GA and 5b. Figure 4(b) compound preparation
scheme-2, i.e. synthesis of amide derivatives of 3-O-ace-
tyl GA.

Isolation of 3b-hydroxy-11-oxoolean-12-en-29-oic acid
(GA) from G. glabra

Extraction and fractionation of G. glabra roots
The roots of G. glabra were air-dried under shade and then
powdered. This powdered material (2.04 kg) was extracted
with methanol (4� 5 L) at room temperature. The combined
methanol extract was subjected for complete solvent
removal at 40 �C under vacuum. This dried methanolic
extract was dissolved in distilled water (2 L) and successively
extracted with dichloromethane, ethyl acetate and n-butanol
(4� 400ml). The combined dichloromethane, ethyl acetate
and n-butanol extracts were separately subjected under vac-
uum distillation at 40 �C to yield dichloromethane (99.0 g),
ethyl acetate (100.0 g) extracts and n-butanol (56.0 g) as
given in Figure 1.

Isolation of GL from n-BuOH extract of G. glabra by flash
chromatography
A glass flash column with internal diameter 3 cm and length
23 cm was used. The Flash column was packed with silica
gel-H of TLC grade (without binder). The column was tightly
packed using vacuum followed by elution of the column
with a non-polar solvent (hexane) to ensure good packing of
the column. Before loading the extract, glass column was
completely dried, and then 1.00 g of BuOH extract of G. gla-
bra was dissolved in small amount of methanol, and with
the help of a pipette, it was spread onto the glass column
without using vacuum to form a uniform band. The above
step was followed by complete drying of the glass column
under vacuum. Gradient elution of flash was carried out with

Figure 1. A schematic procedure for extraction and fractionation of Glycyrrhiza glabra roots.
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a mixture of CHCl3:MeOH in increasing order (up to 50%
MeOH). Fractions of 50ml each were collected. A total of 149
fractions were collected and pooled based on their TLC pro-
file. Excellent separation was achieved due to fine particle
size (average size 10 lm) of silica gel-H. The pooled fractions
42–58 (650mg) eluted with CHCl3:MeOH (85:15) were homo-
geneous and characterised as GL based on their 1H and 13C
NMR spectroscopic data (Figure 2).

Acidic hydrolysis of GL to GA
GL (650.0mg obtained from Flash chromatographic fractions
42–58) was dissolved in 25ml of 10% H2SO4 solution in
MeOH, and the reaction mixture was refluxed for 3–4 h,
which was further diluted with water, neutralised with 10%
NaOH solution and then extracted thrice with CHCl3. The
combined CHCl3 extract was dried under vacuum, which
afforded aglycone (450mg). This aglycone was purified over
flash using silica gel-H. A total of 148 fractions were collected

and pooled based on their TLC profile. The fractions 29–46
eluted with CHCl3 MeOH (99:1) afforded homogeneous prod-
uct (GA, 250mg) characterised as GA on the basis of their 1H
and 13C NMR spectroscopic data, 18b-GA (Figure 3).

Semi-synthesis of GA derivatives

The chemical reactions for the synthesis of 3-O-acyl deriva-
tives and 3-O-acetyl amide derivatives are depicted in
Schemes 1 and 2, respectively. All the acyl derivatives were
synthesised by taking GA and corresponding acyl chloride (2
equivalent) and a catalytic amount of 4-(N, N-dimethyl) ami-
nopyridine (DMAP) into dry pyridine as solvent and refluxing
the reaction mixture for 8 h up to 80 �C (Figure 4(a)).
Reaction mixture was then neutralised with 5% HCl solution
and extracted thrice with ethyl acetate. The combined ethyl
acetate fraction was washed with water, dried over anhyd-
rous Na2SO4 and solvent removed under vacuum to yield
the crude product. Further, the crude product was purified
by column chromatography which afforded the
desired products.

All the 3-O-acetyl amide derivatives were semi-synthesised
by treating 3-O-acetyl GA with oxalyl chloride (2 equivalent)
in dry dichloromethane (DCM) for 3 h followed by adding
corresponding amines (1.5 equivalent) and triethylamine
under nitrogen atmosphere (Figure 4(b)). The reaction mix-
ture was stirred for 4 h at room temperature. The reaction
was quenched with H2O (10ml), and the organic phase was
separated. The aqueous phase was extracted with CH2Cl2
(3� 30ml). The combined organic phase was dried over
Na2SO4, filtered and evaporated under vacuum to give the
crude product. The products were purified by column chro-
matography, which afforded the desired derivatives. All the
GA derivatives were characterised on the basis of their 1H
and 13C NMR spectroscopic data.

Figure 2. Structure of glycyrrhizic acid.

Figure 3. Structure of glycyrrhetinic acid (GA).
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Characterisation of GL, GA and GA derivatives (GA1–GA5)
All the GA derivatives were characterised on the basis of
their1H and 13C NMR spectroscopic data as given below:

GL:
1H NMR (300MHz, C5H5N) : d 0.76–1.32 (3H each all s,

7 � tert.CH3), 2.32 (s, 1 H; 9H), 1.97 (3 H, s, C-32), 4.2 (1 H, dd,
J¼ 6.8 and 8.7Hz, 3 a-H), 5.56 (1 H, s, H-12), 5.20 (1H,d, H-1’),
3.23 (1 H, m, H-2’), 3.62 (1 H, m, H 3’ and H-4’), 4.45 (1 H, d,
H-5’), 12.22 (1 H, s, H-6’), 4.86 (1H,d, H-1”), 3.53 (1 H, m, H-2”,
H-3” and H-4”), 4.5 (1 H, d, H-5”), 12.3 (1 H, s, H-6”)

13C NMR (C5H5N, 75MHz): 39.9 (C-1), 27.0 (C-2), 88.7 (C-3),
37.8 (C-4), 55.5 (C-5), 18.1 (C-6), 33.2 (C-7), 43.7 (C-8), 62.4 (C-
9), 37.6 (C-10), 199.9 (C-11), 128.9 (C-12), 169.9 (C-13), 45.8
(C-14), 28.3 (C-15), 26.8 (C-16), 32.4 (C-17), 48.9 (C-18), 41.9
(C-19), 44.3 (C-20), 31.8 (C-21), 38.6 (C-22), 28.0 (C-23), 16.8
(C-24), 17.0 (C-25), 19.0 (C-26), 23.7 (C-27), 28.7 (C-28), 28.9
(C-29), 179.4 (C-30), 104.1 (C-1’), 83.1 (C-2’), 75.8 (C-3’), 71.7
(C-4’), 76.5 (C-5’), 170.5 (C-6’), 105.2 (C-1”), 75.4 (C-2”), 76.9
(C-3”), 71.8 (C-4”), 75.9 (C-5”), 170.6 (C-6”).

GA:
1H NMR (300MHz, CDCl3): d 0.76–1.32 (3H each all s, 7 �

tert.CH3) 2.32 (s, 1 H, 9H), 3.36 (1H, dd, J¼ 6.8 and 8.5Hz, 3
a-H) 5.62 (1H, m, H-12).

13C NMR: 39.9 (C-1), 27.0 (C-2), 78.1 (C-3), 37.8 (C-4), 55.5 (C-
5), 18.1 (C-6), 33.2 (C-7), 43.7 (C-8), 62.4 (C-9), 37.5 (C-10), 199.1
(C-11), 128.9 (C-12), 169.9 (C-13), 45.8 (C-14), 28.3 (C-15), 26.8
(C-16), 32.4 (C-17), 48.9 (C-18), 41.9 (C-19), 44.3 (C-20), 31.8 (C-
21), 37.5 (C-22), 27.8 (C-23), 16.8 (C-24), 17.0 (C-25), 19.0 (C-26),
23.7 (C-27), 28.8 (C-28), 28.9 (C-29), 179.4 (C-30).

GA-1:
1H NMR (CDCl3, 300MHz): d 0.86–1.35 (3H each, all s, 7 �

tert CH3), 4.32 (1H, m, H-3), 5.61 (1 H, s, H-12), 2.04 (3 H, s, H-2’).

13C NMR (CDCl3, 75MHz): dC 39.2 (C-1), 26.8 (C-2), 81.6 (C-
3), 38.5 (C-4), 55.4 (C-5), 17.8 (C-6), 33.1 (C-7), 43.6 (C-8), 62.1
(C-9), 37.3 (C-10), 200.8 (C-11), 128.8 (C-12), 169.9 (C-13), 45.9
(C-14), 28.4 (C-15), 26.8 (C-16), 32.3 (C-17), 48.6 (C-18), 41.2
(C-19), 44.2 (C-20), 31.6 (C-21), 38.1 (C-22), 28.9 (C-23), 16.8
(C-24), 17.1 (C-25), 19.1 (C-26), 23.7 (C-27), 28.9 (C-28), 29.8
(C-29), 182.2 (C-30), 171.5 (C-1’), 21.7 (C-2’).

GA-2:
1H NMR (CDCl3, 300MHz): d 0.83–1.34 (3H each, all s, 7 �

tert CH3), 4.48 (1 H, m, H-3), 5.60 (1H, s, H-12), 2.00 (3H, s, H-
2’), 3.24 (2H, m, H-1”), 0.86 (3H, t, J¼ 7.5 Hz, H-3”).

13C NMR (CDCl3, 75MHz): d 39.2 (C-1), 26.9 (C-2), 81.0 (C-3),
37.9 (C-4), 55.4 (C-5), 17.8 (C-6), 33.1 (C-7), 43.6 (C-8), 62.1
(C-9), 37.3 (C-10), 200.3 (C-11), 128.8 (C-12), 169.7 (C-13), 45.8
(C-14), 28.4 (C-15), 26.9 (C-16), 32.3 (C-17), 48.6 (C-18), 41.6 (C-
19), 43.9 (C-20), 31.9 (C-21), 38.4 (C-22), 28.9 (C-23), 16.7 (C-
24), 17.0 (C-25), 19.1 (C-26), 23.7 (C-27), 28.9 (C-28), 30.0
(C-29), 176.0 (C- 30), 171.3 (C-1’), 21.6 (C-2’), 42.3 (C-1”), 23.9 (C-
2”), 11.8 (C-3”).

GA-3:
1H NMR (CDCl3, 300MHz): dC 0.85–1.37 (3H each, all s,

7 � tert CH3), 4.46 (1H, m, H-3), 5.62 (1 H, s, H-12), 2.02 (3H,
s, H-2’), 3.29 (2 H, m, H-1”), 0.85 (3 H, t, J¼ 7.5 Hz, H-4”).

13C NMR (CDCl3, 75MHz): dC 39.2 (C-1), 26.8 (C-2), 81.0 (C-
3), 37.9 (C-4), 55.4 (C-5), 17.8 (C-6), 33.1 (C-7), 43.6 (C-8), 62.1
(C-9), 37.3 (C-10), 200.4 (C-11), 128.8 (C-12), 169.8 (C-13), 45.8
(C-14), 28.4 (C-15), 26.8 (C-16), 32.3 (C-17), 48.6 (C-18), 42.3
(C-19), 43.9 (C-20), 31.9 (C-21), 38.4 (C-22), 28.9 (C-23), 16.8
(C-24), 17.0 (C-25), 19.1 (C-26), 23.7 (C-27), 28.9 (C-28), 30.0
(C-29), 176.0 (C-30), 171.4 (C-1’), 21.7 (C-2’), 39.8 (C-1”), 33.1
(C-2”), 20.4 (C-3”), 14.0 (C-4”).

GA-4:

Figure 4. a. Scheme 1. Synthesis of 3-O-acyl derivatives of GA. b. Scheme 2. Synthesis of amide derivatives of 3-O-acetyl GA.
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1H NMR (CDCl3, 300MHz): d 0.84–1.40 (3H each, all s, 7 �
tert CH3), 4.79 (1H, dd, J¼ 6.3 & 8.9 Hz, H-3), 5.74 (1H, s, H-
12), 7.47-8.13 (5H, m, Ar-H).

13C NMR (CDCl3, 75MHz): dC 39.2 (C-1), 26.8 (C-2), 81.7 (C-
3), 38.2 (C-4), 55.5 (C-5), 17.8 (C-6), 32.3 (C-7), 43.6 (C-8), 62.2
(C-9), 37.4 (C-10), 200.6 (C-11), 128.9 (C-12), 172.5 (C-13), 45.9
(C-14), 28.6 (C-15), 26.8 (C-16), 31.3 (C-17), 48.6 (C-18), 38.9
(C-19), 45.9 (C-20), 30.1 (C-21), 37.4 (C-22), 28.9 (C-23), 16.8
(C-24), 17.4 (C-25), 19.1 (C-26), 23.8 (C-27), 28.9 (C-28), 29.8
(C-29), 176.0 (C-30), 172.5 (C-1’), 130.0 (C-2’), 130.6 (C-3’ and
C-7’), 128.9 (C-4’and C-6’), 133.1 (C-5’).

GA-5:
1H NMR (CDCl3, 300MHz): d 0.99–1.35 (3H each, all s, 7 �

tert CH3), 4.48 (1H, m, H-3), 5.67 (1H, s, H-12), 2.04 (3H, s, H-
2’), 3.82 (2H, t, J¼ 6.6 Hz, H-1”), 2.95 (2H, t, J¼ 6.6 Hz, H-2”).

13C NMR (CDCl3, 75MHz): dC 39.2 (C-1), 26.8 (C-2), 80.6 (C-3),
38.0 (C-4), 55.4 (C-5), 17.8 (C-6), 33.1 (C-7), 43.7 (C-8), 62.2 (C-9),
37.4 (C-10), 201.0 (C-11), 128.7 (C-12), 171.4 (C-13), 45.9 (C-14),
28.4 (C-15), 26.8 (C-16), 32.2 (C-17), 48.6 (C-18), 41.9 (C-19), 44.1
(C-20), 30.1 (C-21), 38.4 (C-22), 29.0 (C-23), 16.8 (C-24), 17.1 (C-
25), 19.1 (C-26), 23.7 (C-27), 28.4 (C-28), 29.9 (C-29), 177.0 (C-
30), 171.4 (C-1’), 21.7 (C-2’), 45.9 (C-1”), 41.9 (C-2”).

In vitro cytotoxicity evaluation

Preparation of test sample solutions
The test samples 18b-GA and its derivatives GA-1, GA-2, GA-
3, GA-4 and GA-5 were weighed in micro-centrifuge tubes,
and stock solutions of 20mM were made by dissolving the
samples in DMSO. Stocks are stored at �20 �C. A working
solution of 12.5, 25, 50, 100 and 200 lM concentrations was
made by diluting the stock solution in culture medium.

Cell culture

The MDA-MB-231 (Organism: Homo sapiens, Tissue/site:
breast metastatic, Cell type: epithelial, TNBC) were procured
from American Type Culture Collection (ATCC) and cultured
as per manual instructions. The cells were cultured and main-
tained in RPMI-1640 medium at 37˚C and 5% CO2/95% air in
a humidified incubator and were regularly examined micro-
scopically for stable phenotype.

SRB assay

Addition of cells: the cells were dispensed in a flat-bottom
96-well plate. To each well, 100 ll of the cell suspension con-
taining 10,000–15,000 cells was added. Further, the cells
were incubated at 37 �C in 5% CO2/95% air concentration for
24 h, prior to the addition of test samples.

Test samples addition: a working solution of 100 ll of test
sample was added to the cell monolayer to give a final con-
centration of 200 lM. A series of four dilutions 12.5, 25, 50
and 100lM for each derivative in three replicates
were included.

Negative (Vehicle) controls: in every assay plate, DMSO
was added in 0.1% concentration as vehicle control. The final
concentration of DMSO was 0.1% in all assay wells. Finally,

the plates were incubated at 37 �C in 5% CO2 concentration
for 48 h.

Addition of sulphorhodamine B ass and colorimetric read-
ing: once the treatment period was done, after 48 h incuba-
tion, cold 50% trichloroacetic acid (TCA Sigma-Aldrich (St.
Louis, MO), 50 ll/well) was added on top of the medium to
fix the cells attached to substratum and incubated for 1 h at
4 �C. After that, a five-time gentle wash was given to the
plate on a slowly running tap water to remove dead cells,
culture medium and TCA. After washing, the plates were air-
dried. Further, 50 ll/well of SRB solution was added to the
dried plate and left at room temperature for 30min. After
incubation, unbound SRB dye was removed by four to five
times washing with 1% (v/v) glacial acetic acid. Plates were
allowed to air dry at room temperature. Further, 150 ll of
10mM Tris base solution was added to each well to solubil-
ise the protein-bound dye, and plate is shaken for 15min on
a gyratory shaker. Finally, the absorbance was taken at
510 nm using a plate reader.

Data analysis

Percentage of cell growth inhibition in the presence of the
test sample is calculated as follows:

Percentage of cells killed ¼ 100� MeanODtest

MeanODcontrol

� 	
þ 100

Identification of therapeutic targets for GA in
MDA-MB-231

Based on recently published report, a 48 h treatment of
MDA-MB-231 cells with 20 lM/l GA attenuate cellular gluta-
thione (GSH) level causes apoptosis in TNBC cancers ( Cai et
al., 2017). The cellular GSH level is controlled by GLO-I and
Topoisomerase-II as reported by Silva et al. (2013) and
Cameron et al. (1999). However, a web-based target identifi-
cation tools, viz., Stitch-DB (http://stitch.embl.de.) and Swiss
target prediction, identified hydroxysteroid 11-beta-dehydro-
genase-1(1HSD1) as possible binding targets for GA (Figure
S8, Supplementary information). Therefore, an approach of
molecular docking-based screening was applied for GA and
derivatives to rank possible MDA-MB-231 targets viz., GLO-I,
TOPO-II and 11HSD1 based on their degree of bind-
ing energies.

Molecular docking and APF-based scoring

The crystal structure of GLO-I (PDB: 4PV5) bound with GA
(2.3 Å resolution) was retrieved from protein database
(Zhang et al., 2015). The GA derivative structures were con-
verted to ICM object using ICM Molsoft–chemist v3.8-6
(2018) (Molsoft LLC, San Diego, CA). It uses Monte Carlo
minimisation in the APF’s potentials in conjunction with
standard MMFF94 force field energies. The method was
developed by Totrov (2008), and Grigoryan et al. (2010).
Protein–ligand docking tool FlexX provided by LeadIT soft-
ware v2.1.6, 2017 (BioSolveIT GmbH, Sankt FeAugustin,

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 7

http://stitch.embl.de
https://doi.org/10.1080/07391102.2019.1570868


Germany, www.biosolveit.de/LeadIT) was used to perform
molecular interaction study as proposed by Kramer, Rarey,
and Lengauer (1999). The amino acids within 10 Å region
from GA active site of enzyme GLO-I were selected to get
more flexibility in interaction study. The number of pose
generation was set at 10, and computed pose with minimum
energy (RMSD) was selected for comparative study.

Computational assessment for oral bioavailability
and toxicity

All the five GA derivatives were also studied for their oral
bioavailability by calculating various pharmacokinetic param-
eters such as plasma protein binding, blood–brain barrier
penetration capacity, intestinal absorption, hepatotoxicity
and oral bioavailability. Furthermore, the derivatives were
evaluated for toxicity risk screening using Discovery Studio
v3.5 TOPKAT (Toxicity Prediction by Komputer Assisted
Technology) tool. TOPKAT is a Quantitative Structure Toxicity
Relationship (QSTR)-based tool developed by Accelrys Inc.
USA (http://accelrys.com) licensed to CSIR-CIMAP, Lucknow
(www.cimap.res.in). The module utilises highly robust and
cross-validated QSTR models to predict toxicity. The module
applies patented Optimal Predictive Space (OPS) which is a
unique multivariate descriptor space for result interpretation
(Enslein, 1988; Enslein et al., 1987). The module computes

the toxic and environmental effects of compounds exclu-
sively from their chemical structures. DS-TOPKAT module
searches fragments within query molecule based on molecu-
lar fingerprint similarity with the training set compounds.
The TOPKAT toxicity prediction results for unknown com-
pound are calculated based on probability score, Bayesian
scores and Mahalanobis distance (structure similarity) from
the centre of the training set compounds. DS-TOPKAT gives
predictions for a range of toxicological end points, including
mutagenicity, developmental toxicity, rodent carcinogenicity,
rat chronic Lowest Observed Adverse Effect Level (LOAEL),
rat Maximum Tolerated Dose (MTD) and rat oral LD50 (Table
S6, Supplementary material).

Results and discussion

2D-QSAR model development and validation results

The developed QSAR identifies activity-inducing features of
144 MDA-MB-231 inhibitors selected in the model develop-
ment (Tables S1 and S2, Supplementary material). The devel-
oped QSAR model was validated through various statistical
approaches viz., LOO, external test set prediction (r2pred), Z
scores and r2m matrix calculation. The results of statistical
parameters are summarised in Table 1.

QSAR MLR equation

PIC50 lMð Þ ¼ 0:0016þ7:2421 Epsilon4ð Þ
þ1:2894 chiV3Clusterð Þ�0:7603 TNN5ð Þ

þ0:1635 Nitrogen countð Þ þ2:3425 chi3chainð Þ
(6)

where N (training set, 70% of 144 MDA-MB-231 inhibitors) =
100, n (test set, 30% of 144 MDA-MB-231 inhibitors) = 44, r2

(regression coefficient for training set) = 0.8442, R2se =
0.3063, q2 (regression coefficient for LOO validation) =
0.8282, q2se = 0.3214, Fisher test = 101.6555, predicted r2

(regression coefficient for external test set) = 0.7532, pred
r2se = 0.3659, Z score R2 = 14.76689, Z score q2 = 14.61679
and Z score pred r2 = 4.11170.

The QSAR model attains good correlation coefficient of
0.84 for training set of 100 inhibitors. The fitness plot
between observed and predicted PIC50 values is presented in

Table 1. The statistical parameters and their calculated values for training set of QSAR model.

S. No.
Statistical qualities

(training set) Parameter explanation Value Reported acceptable range

1. N Training set, 70% whole dataset 100
2. r2 Regression coefficient for training set 0.8442 >0.6 (Golbraikh & Tropsha,2002)
3. q2 Regression coefficient for leave-one-out (LOO) validation 0.8282 >0.5 (Golbraikh & Tropsha,2002)
4. F-test Fisher test 101.656 High value is good
5. Z score for r2 Randomisation test for r2 14.767 >1.28 at SD 0.10, (Zheng & Tropsha,2000)
6. Z score for q2 Randomisation test for q2 14.617 >1.28 at SD 0.10, (Zheng & Tropsha,2000)
7. r20 Correlation regression without intercept 0.8439
8. r=20 Reciprocal of r20, i.e. taking predicted value in

x-axis while calculation
0.8219

9. r2m Correlation between actual and predicted values with
intercept and without intercept while calculation

0.8301 >0.5 (Ojha et al.,2011)

10. r=2m Reciprocal of r2m, i.e. taking predicted value in x-axis 0.7181 >0.5 (Ojha et al.,2011)
11. �r2m Average of r2m and r/2m 0.7741 >0.5 (Ojha et al.,2011)
12. Dr2m Absolute difference between r2m and r/2m 0.1119 <0.2 (Ojha et al.,2011)

Figure 5. Regression curve (MLR model) for actual and predicted PIC50 of 144 nat-
ural scaffold-based inhibitors of metastatic TNBC cell line MDA-MB-231. Training
and test set compounds are highlighted in blue and red dots, respectively.
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Figure 5. The high value of cross-validation (LOO) regression
(q2) of 0.82 indicates that training set compounds (blue dots)
exhibit less statistical noise. Regression coefficient for ran-
domly selected 44 external test set (Pred R2) was found to
be 0.75. The test set regression infers the good predictability
of model for unknown compounds (red dots), and a small
measure of error (0.0016) indicates data comprehensiveness.
Additionally, an even distribution of residual values around
the axis line indicates good model quality (Figure S3,
Supplementary material). Furthermore, high value for Fishers
test, F¼ 101.65, again verified robustness of the model. Also,
high Z scores of 14.76689, 14.61679 and 4.11170 for r2, q2

and pred r2, respectively, supported the good model quality.
The computed statistical qualities for training and test sets
are summarised in Tables 1 and 2 with their reported cut-
off values.

Based on Ojha et al. (2011) the r2pred is not a true evi-
dence for model prediction ability, since r2pred depends on
training set mean and therefore greatly influenced by train-
ing set and test set selections. However, r2m matrix shows the
predictability of the model for whole dataset. For test set,
the acceptable range for parameters, r2pred, r2m and r’2m, is
0.5, Dr2m should be less than 0.2 and r2mbar should be more
than 0.5 (Ojha et al., 2011). In the present case, the r2, r2

(LOO), r2m, r
’2
m, r

2
mbar and Dr2m values for training set are 0.84,

0.82, 0.83, 0.71, 0.77 and 0.11, respectively (Table 1). All stat-
istical parameters for training set were found within their
cut-off limits (Table 1). For test set, r2pred, r2m and r’2m were
found to be 0.75, 0.67 and 0.63, respectively. The calculated
values of r2m (bar) and Dr2m for test set are 0.65 and 0.03,
respectively, that are within their cut-off limits (Table 2). The
computed r2m matrix validates the reliability and robustness
of developed QSAR model for anticancer activity prediction
of unknown compounds. Also, the model identified features
help to explore the structure-based inhibition mechanism of
MDA-MB-231inhibitors.

QSAR model identified 2D structural properties and
description
Generated Equation (6) explains the model extracted out of
five important descriptors that determine the cytotoxic
potential of MDA-MB-231 inhibitors which are (i) Epsilon4
that signifies the measure of electronegativity count, (ii)
ChiV3cluster indicates valence molecular connectivity index,
(iii) chi3chain represents retention index for three-membered

ring, (iv) TNN5 stands for nitrogen atoms separated through
5-bond distances and (v) nitrogen counts, i.e. number of
nitrogen atoms in the molecule.

The topochemical descriptor Epsilon4 signifies the meas-
ure of electronegativity count and contributes 11% to the
biological activity (PIC50). The descriptor chiV3Cluster belongs
to valence molecular connectivity index of third-order cluster
(Shen et al., 2002). It is known that molecular connectivity
indices are mostly successful among other topological prop-
erties in compound property estimation, since these indices
are based on contingent chemical, structural and mathemat-
ical ground. The important advantage of the molecular con-
nectivity model comprises its flexibility, to quantify general
as well as local structural properties. The percentage contri-
bution for identified descriptors is presented in Figure S4
under supplementary material. Figure S4 describes that
descriptor chiV3Cluster contributes 30% to biological activity
of training set compounds, whereas TNN5 descriptor that
defines two nitrogen atoms separated through 5-bond dis-
tances showed inverse relationship to the biological activity.
However, descriptor nitrogen count shows positive effect
and contributes 21% to the activity (PIC50). Additionally,
Equation (6) indicates that nitrogen-containing functional
groups may increase the biological activity, though chemical
fragments containing nitrogen atoms departed by long chain
(TNN5) might not be very favourable. Overall, the model sug-
gests that maximum contribution hails from the descriptors
chiV3Cluster, Epsilon4 and nitrogen count (Figure S4,
Supplementary material).

2 D-QSAR model AD assessment results

A PCA analysis indicates that 44 test set compounds fall
within the structure space of training set compounds.
Figure 6 shows generated PCA graph for training set (blue
sphere) and test set (yellow sphere). The figure illustrates a
uniform distribution of test set within the vector space of
training set compounds. The figure defines the test set as a
true representative of training set. Also, a broad biological
activity space of 10�1–101 lM for training and test sets indi-
cates that the data were comprehensive. A correlation matrix
for PIC50 and extracted descriptor (Epsilon4, chiV3Cluster,
T_N_N_5, Nitrogen count and chi3chain) was also generated
(Table S4, Supplementary material). It showed that the devel-
oped model based on the selected descriptors is well
established.

Table 2. The statistical parameters and their calculated values for test set of QSAR model.

S. No.
Statistical qualities

(test set) Parameter explanation Value Reported acceptable range

1. n Test set, 30% of whole dataset 44
2. r2pred Regression coefficient for test set 0.7532 >0.5 (Golbraikh & Tropsha,2002)
3. Z sore for r2pred Randomisation test for r2pred 4.11170 >1.28 at SD 0.10, (Zheng & Tropsha,2000)
4. r20 Correlation regression without intercept 0.7410
5. r=20 Reciprocal of r20, i.e. taking predicted value in

x-axis while calculation
0.7299

6. r2m Correlation between actual and predicted values with
intercept and without intercept while calculation

0.6702 >0.5 (Ojha et al.,2011)

7. r=2m Reciprocal of r2m, i.e. taking predicted value in x-axis 0.6384 >0.5 (Ojha et al.,2011)
8. �r2m Average of r2m and r/2m 0.6543 >0.5 (Ojha et al.,2011)
9. Dr2m Absolute difference between r2m and r/2m 0.0317 <0.2 (Ojha et al.,2011)
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A UPGMA-based hierarchical cluster analysis (Tanimoto
structure similarity distance 0–0.7) of 144 dataset compounds
indicate that training set, test and five GA derivatives come
within the AD of QSAR model. Also, the heat map generation
for chemical properties viz., molecular weight, logP, polar sur-
face area, maximum ring size, minimum ring size, maximum
fused rings and number of rotatable bonds also indicates the
optimal chemical property range (Figure S1,
Supplementary material).

Identified 3D structural property fields through
3D-QSAR studies

At this point, an attempt was made to generate APF-based
3D-QSAR analysis to systematically describe the structural
atomic field level of novel GA derivatives. The 3D-QSAR ana-
lysis performed by Atom Property Fields (APF) methods was
developed by Totrov (2008). For this purpose, a set of con-
generic series of 42 GA derivatives with in vitro inhibition
activity against MDA-MB-231 cell line were selected. The
dataset structures were flexibly aligned to the generated
property fields of co-crystallised GA on GLO-I. The co-crystal-
lised GA on GLO-I binding site is depicted in Figure 7. The
generated model presented a good regression coefficient of
0.96 for training set compounds. Also, the external test set-

based regression reverted a good predictive regression coef-
ficient of 0.82 (Tables 3 and 4). The regression plots between
observed and predicted PIC50 for training and test sets are
shown in Figures 8 and 9. The calculated results of statistical
parameters training and test sets are compiled in Tables 3
and 4, respectively. All statistical properties were found
within their cut-off limit. The results indicate that generated
model is robust enough to give consistent prediction for
novel GA derivatives. Henceforth, novel GA compounds
namely GA-1, GA-2, GA-3, GA-4 and GA-5 were aligned on
training set and their PIC50 values were predicted through
developed 3D-QSAR model. The model presented IC50 for GA
derivatives ranges from 44.26 to 103.75lM. Based on 3D-
QSAR model predicted results, it has been expected that
designed derivatives may show moderate activity against
TNBC cell line.

Semi-synthesis and SRB-based in vitro cytotoxicity assay
results for GA derivatives GA-1, GA-2, GA-3, GA-4 and
GA-5 against metastatic TNBC cell line MDA-MB-231

Our design concept for GA derivatives, GA-1, GA-2, GA-3, GA-
4 and GA-5, was to introduce structural variations at C-3 and
C-30 positions to improve the anticancer efficiency. The 2D-
QSAR model extracted descriptor Epsilon4 indicates that

Figure 6. Generated 3D Principal Component Analysis (PCA) to ascertain uniform distribution of test set (yellow sphere) within property vector space of training
set (blue sphere).

10 A. SHUKLA ET AL.

https://doi.org/10.1080/07391102.2019.1570868


Table 3. The statistical parameters and their calculated values for training set of APF 3D-QSAR model.

S. No.
Statistical qualities

(training set) Parameter explanation Value Reported acceptable range

1. N Training set 37
2. SelfMAE Mean absolute error 0.0771089
3. Test_r2 Regression coefficient for training set 0.963138 >0.6 (Golbraikh & Tropsha,2002)
4. selfRMSE Root-mean-square error 0.0999803
5.
6. Self-spearman Spearman regression coefficient 0.98056
7. r20 Correlation regression without intercept 0.9632
8. r=20 Reciprocal of r20, i.e. taking predicted value

in x-axis while calculation
0.9617

9. r2m Correlation between actual and predicted values
with intercept and without intercept while calculation

0.90555 >0.5 (Ojha et al.,2011)

10. r=2m Reciprocal of r2m, i.e. taking predicted value in x-axis 0.9203 >0.5 (Ojha et al.,2011)
11. �r2m Average of r2m and r/2m 0.9129 >0.5 (Ojha et al.,2011)
12. Dr2m Absolute difference between r2m and r/2m �0.0147 <0.2 (Ojha et al.,2011)

Table 4. The statistical parameters and their calculated values for test set of APF 3D-QSAR model.

S. No.
Statistical qualities

(test set) Parameter explanation Value Reported acceptable range

1. n Test set 5
2. SelfMAE Mean absolute error 0.2772
3. r2 Regression coefficient for test set 0.82 >0.5 (Golbraikh & Tropsha,2002)
4. testr2ðLOOÞ Regression coefficient for test set

leave-one-out (LOO) validation
0.6502 >0.6 (Golbraikh & Tropsha,2002)

5. testRMSE Root-mean-square error 0.3279
6. Test Spearman Spearman regression coefficient 0.8207
7. r20 Correlation regression without intercept 0.8196
8. r=20 Reciprocal of r20, i.e. taking predicted value

in x-axis while calculation
0.7659

9. r2m Correlation between actual and predicted values
with intercept and without intercept while calculation

0.8043 >0.5 (Ojha et al.,2011)

10 r=2m Reciprocal of r2m, i.e. taking predicted value in x-axis 0.6269 >0.5 (Ojha et al.,2011)
11. �r2m Average of r2m and r/2m 0.7157 >0.5 (Ojha et al.,2011)
12. Dr2m Absolute difference between r2m and r/2m 0.17737 <0.2 (Ojha et al.,2011)

Figure 7. The zoom-in view of glyoxalase-I bound glycyrrhetinic acid atomic property fields represented with CPK form. The white blob represented equipotential
contour of lipophilic property. Red and blue blobs on carbon-3 (C-3) and carbon-30 (C-30) represented equipotential contour of hydrogen bond acceptor and
donor, respectively.
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Figure 8. Regression plot for training set compounds for 3D-QSAR model. Different compounds were highlighted with different colour codes based on APF score
of training set compounds.

Figure 9. Regression plot for test set compounds for 3D-QSAR model. Different compounds were highlighted with different colour codes based on their APF score.
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electronegativity on GA causes favourable effects on bio-
logical activities. A positive correlation with electronegativity
was also found in 3D-QSAR studies (Figure 10). 2D-QSAR
descriptor ChiV3cluster suggested that less branching at GA
scaffold is favourable. Hence, small fragments viz., propyl
amide, butyl amide and amino ethyl amide were substituted
at C-30 carbon (GA-1, GA-2, GA-3 and GA-5). The structures
of prepared derivative are given in Figure 4(a,b). However,
3D-QSAR-based property fields suggest that lipophilicity and
electronegativity play governing role in anticancer properties
of GA derivatives. Therefore, a derivative with benzoate
group substitution at C-3 position was also prepared (GA-4).
The detailed analysis of 2D- and 3D-QSAR-based structur-
e–activity relationships is illustrated in Figure 10. Based on
QSAR model studies, five novel derivatives of GA named GA-
1, GA-2, GA-3, GA-4 and GA-5 were semi-synthesised with
modifications at C-3 and C-30 positions and screened
through the developed model (Figure 4(a,b)).

Further, a dose-dependent in vitro cytotoxicity of GA and
derivatives was investigated against metastatic TNBC cell line
MDA-MB-231. The 48 h exposure of derivatives GA-1, GA-3
and GA-4 inhibits MDA-MB-231 cells with IC50 76.5, 91.79
and 116.07lM, respectively (Table 5). Derivative GA-1 was
found the most active as it showed the most cytotoxic

activity against MDA-MB-231 cells. However, GA-2 and GA-5
were found least effective as they indicated 35.56 and
25.63% cancer cells inhibition at maximum concentration of
200 lM, respectively. GA-3 and GA-4 showed moderate inhib-
ition potentials of 91.79 and 116.07 lM, respectively.

2 D and 3D-QSAR model results and their correlation
with in vitro activity of GA-1, GA-2, GA-3, GA-4 and
GA-5

In order to prospectively validate the generated 2D- and 3D-
QSAR models, the anticancer activities of the novel GA deriv-
atives were calculated and compared with the in vitro activity.
Relevance for 2D-QSAR was based on the data homogeneity
constructed using natural scaffold-based training set with
fused ring structures (two to five rings) (Figure S3,
Supplementary material). The GA derivatives are pentacyclic
triterpene. The 2D-QSAR model predicted that IC50 was in the
range of 49–18 lM. Not much difference in activities between
GA-1, GA-2 and GA-3 was predicted because of their high
topological similarity. Hence, an atomic potential field-based
3D-QSAR was applied to recognise biologically significant
structural features of GA derivatives. The dataset for 3D-QSAR

Figure 10. The APFs map of equipotent contour of most active, moderately active and least active GA derivatives used in 2D- and 3D-QSAR modelling. (a) Most
active GA derivative with IC50: 1.37mM, showing modification at C-3 and C-30 carbons with lipophilic branches. The most active GA derivative exhibits high 2D-
QSAR descriptor Chiv3cluster value; 1.163 (b) moderately active GA derivative with IC50: 9.41 mM, showing modification at C-30 carbon with lipophilic fragment.
The molecule exhibits moderate Chiv3cluster value; 1.005 (c) least active GA derivative with IC50: 50mM, showing modification of C-3 carbon with 1,2,3 thiadiazol
group decreases the overall activity of molecule. Least active derivative showed low 2D-QSAR descriptor Chiv3cluster value 0.68. The white blob represented equi-
potential contour of lipophilic property. Red blob represented equipotential contour of hydrogen bond acceptor.
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was based on congeneric series of GA derivatives.
Consequently, it has been expected that APF-based 3D-QSAR
model might present more specific results for derivatives. The
model presented IC50 for GA derivatives ranges from 44.26 to
103.75lM. The 3D-QSAR prediction provided more variations
in PIC50 of GA derivative. Also, a positive correlation between
APF scores and in vitro activity indicates correlation between
APFs score in negative and cytotoxic activity (Figure 11).

The results of 2D- and 3D-QSAR models and in vitro activ-
ities on GA derivatives indicate that 3-O-acyl derivative
named GA-1 was more significant in terms of biological
activity. It has been found that modification at C-30 carbox-
ylic group with amide group in GA-2, GA-3, GA-4 and GA-5
resulted in a decrease in cytotoxic potential against
MDA_MB-231. Moreover, APF 3D-QSAR-based predicted
activities for derivatives were found comparable to their in
vitro IC50 values. Therefore, the results indicate that APF-
based 3D-QSAR performed well in predicting the biological
activities of studied compounds.

Mode of action study, binding energy and APF scores of
GA-1, GA-2, GA-3, GA-4 and GA-5 with anticancer target
GLO-I

Breast cancer majorly depends on glycolysis as energy source
based on Warburg effect (Fonseca-S�anchez et al., 2012;
Sullivan, Gui, & Vander Heiden, 2016). During glycolysis, a
highly reactive compound known as methyl glyoxalases is
formed. GLO-I metabolises and inactivates methylglyoxalase

produced through glycolysis, making GLO-I inhibitors as
potential anti-tumour agents (Cai et al., 2016; Silva et al.,
2013). Inhibition of GLO-I resulted in the accumulation of
a-oxoaldehydes at cytotoxic levels and reverse multi-drug
resistance (MDR). RT-PCR and Western blot analysis of meta-
static breast cancer MDA-MB-231 often show high expression
of GLO-I. Additionally, knockdown study on GLO-I enzyme
supresses migration and invasion and promotes apoptosis in
metastatic breast cancer cells (Guo et al., 2016). Conventional
and most considered GLO-I inhibitors are coenzyme GSH
analogs, which exhibits efficient inhibition in vitro (Silva
et al., 2013) and reverse MDR; thus, GLO-I inhibitors have
been proposed as efficient anti-tumour agents. However,
these GSH-based inhibitors suffer from poor pharmacokinetic
properties and are difficult to use as lead structure for the
further design of small molecule. Alternatively, non-GSH ana-
log natural inhibitors include flavonoids, methylgerfelin
(MGI), indomethacine, zopolrestat and curcumin and its
derivatives showed good pharmacokinetic properties (Zhang
et al., 2015). Notably, the carboxylic group of these mole-
cules mimics glycyl and c-glutamyl residue moieties of GSH
to form hydrogen bonds with the glycyl and glutamyl sites,
respectively, in the GSH binding site (Figure S5,
Supplementary material). Recently, Cai et al., (2017) have
reported MDA-MB-231 treatment with 20 lM/l of GA for 48 h
which causes apoptosis by inducing GSH inhibition.

Here, a docking-based screening of GA derivatives pre-
sented good binding energy with predicted target GLO-I in
comparison to other two targets 11HSD1 and TOPO-II (Table

Figure 11. A plot between in vitro activity and APF scores of GA derivatives, GA-1, GA-2, GA-3, GA-4 and GA-5. The figure illustrates that there is a positive correl-
ation between atomic property fields and breast cancer inhibition of GA derivatives.
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S5, Supplementary material). Therefore, a non-GSH-based lig-
and namely GA-1, GA-2, GA-3, GA-4 and GA-5 was analysed
for their binding affinity towards GLO-I enzyme.

The mammalian GLO-I exhibits two binding sites with zinc
as a cofactor at its catalytic binding site. One of the binding

sites is glycyl site specific for GSH binding as presented in
Figure 7. The key amino acid residues for glycyl site are
LYS150A, GLY155A, LYS156A, and LEU160A AND PHE162A.
However, glutamyl site exhibited key amino acids, ARG37B,
ASN103B and ARG122A. While the Zn2þ catalytic site

Figure 12. Atomic property field-based docking model of derivative GA-1 (cyan colour ball and stick form, IC50 ¼ 76.5mM) bound to Glyoxalase-I GSH binding site.
(a) The superimposition between glycyrrhetinic acid (white ball and stick form, oxygen atoms highlighted with red) and GA-1 illustrates that the GA-1 exhibits simi-
lar binding conformation as that of co-crystallised glycyrrhetinic acid. (b) A close view of GA-1 and key amino acid residue binding. Orange and green ball lines rep-
resent hydrogen bonds with GA-1 C-30 negatively charged oxygen atom (-RCOO�) with polar hydrogens of amino acid residues ARG-38 (1.8 Å) and ASN-104
(2.3 Å), respectively.

Figure 13. Proposed binding pose of derivatives GA-1 (with binding energy �16.997 kJ/mol) on GSH binding site of Glyoxalase-I. C-30 carboxylic group of GA-1
making two hydrogen bonds with key amino acids ARG-38 and ARG-123.
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coordinating residues include GLN32, HIS126 and GLU172. As
reported by Zhang et al. (2015), for a non-GSH analogs, GA
does not require metal Zn2þ coordination. Therefore, in the
present work, zinc ion was excluded while docking process
as GA is a pentacyclic triterpenoid. From the APF-based
alignment and scoring, it is evident that carboxylic group at
C-30 position plays a critical role in GA-GLO-I binding. The C-
30 carboxylic group hydrogen atom is highly polar and
causes negative charge over oxygen after ionisation. This
leads to hydrogen bonding between C-30 -RCOO� with
polarised hydrogen atoms present in amino acid residues
ARG-38 (1.8 Å) and ASN-104 (2.3 Å) (electrophilic centres) of
GLO-I binding pocket (Figure 12).

In accordance with the results, the most active GA deriva-
tive GA-1 (IC50 = 76.5lM) showed highest APF score of
�425.82 (Table 6). For this purpose, the parent compound
GA with APF �219.67 (IC50 = 82.29) was taken as the positive
control to identify structure–activity relationship based on
their APF score. The least active derivatives GA-2 (IC50
>200 lM) and GA-5 (IC50 >200lM) showed minimum APF
score of �402.047 and �402.14, respectively. Likewise, deriv-
atives GA-3 and GA-4 with moderate IC50 of 91.79 and
116.07lM accordingly presented a moderate APF score of
�401.18 and �415.68, respectively. Consequently, the APF
alignment score and IC50 values indicated that the carboxylic
group at C-30 in GA-1 and GA-4 in some way plays a major
role in enzyme receptor binding.

Correspondingly, the FlexX-based binding energy calcula-
tion of GA derivatives on GLO-I was also found in close
agreement with APF guided structure-based screening results
(Table 6). The results of molecular docking of GA and its
derivatives against GLO-I approved that GA-1 exhibited the
highest binding affinity of �16.997 kJ/mol in comparison to
derivatives GA-2 (�9.7 kJ/mol), GA-3 (�7.293 kJ/mol) and GA-
5 (�10.419 kJ/mol). However, GA-4 also showed good

binding affinity (�21.232 kJ/mol). The binding pose analysis
of active GA-1 showed that amino acid residues ARG-38 and
ARG-123 form hydrogen bonds with C-30 carboxylic group
of GA-1. The proposed binding pose of GA-1 on GSH binding
site of GLO-I is represented in Figure 13.

Oral bioavailability and toxicity risk assessment results

Rodent (mouse/rat) carcinogenic probability based on data
from National Toxicological programme (NTP) showed GA
and its derivatives as non-carcinogen. Conversely, the US
Food and Drug Administration (FDA)-based data predicted
GA and its derivatives as carcinogenic compounds. This
contraindication was resolved by considering Weight of
Evidence (WOE) prediction that indicates GA and its deriva-
tives may possess carcinogenic character. Many anticancer
compounds often possess carcinogenic characters since they
target proliferating cells and cause developmental toxicity in
developing embryos. However, Ames mutagenic prediction
showed derivatives as non-mutagenic. Here, GA-1, GA-2 and
GA-3 were also found non-toxic for developmental mutage-
nicity. Additionally, GA-1 showed moderate to severe skin
effect and ocular irritancy. Detailed compliance for computa-
tional toxicity analysis is provided in supplementary Table S6.
Lastly, the computational results showed that GA and its
derivatives have good aerobic biodegradability, and hence
they are non-persistent and safe to the environment.

Conclusions

In this study, the QSAR model predicted that IC50 and SRB
assay-based biological activities of GA derivatives, GA-2, GA-
3, and GA-4 were found comparable against triple-negative
breast cancer cell line MDA-MB-231. This indicated that the
model extracted structural features viz., Epsilon4 (measure of
electronegativity count), ChiV3cluster (valence molecular con-
nectivity index), chi3chain (retention index for three-mem-
bered ring), TNN5 (nitrogen atoms separated through 5-bond
distances) and nitrogen counts had significant contribution
to the biological activity. The results also signify that OH
group substitution with acyl group at C-3 position increases
the compound lipophilicity, thereby increasing the cytotox-
icity potential against TNBC breast cancer cell line MDA-MB-
231. Conversely, substitution at C-30 position with propyl
amide, butyl amide and amino ethyl amide resulted in
decreased cytotoxicity. However, C-30 substitution with butyl
amide did not cause any significant difference, whereas the
cytotoxicity was decreased due to addition of benzoate
group at C-3 position. Overall, the results suggested that C-
30 carboxylic group is crucial for GA-based cytotoxic activity.
Therefore, an addition of 3-O-acetyl group at C-3 increases
GA lipophilicity, thereby improving the cytotoxicity.

Additionally, APF-based scoring and FlexX-based binding
affinity with GLO-I, a highly expressing enzyme in metastatic
TNBC breast cancers, confirmed that GA and GA-1 exhibited
maximum binding affinity. APF-based flexible alignment of
GA-1 with co-crystallised GA again established the signifi-
cance of C-30 carboxyl group as it serves to make three

Table 5. SRB-based in vitro cytotoxic activity of GA, GA-1, GA-2, GA-3, GA-4
and GA-5 against metastatic triple-negative breast cancer cell line MDA-
MB-231.

Compound In vitro IC50 (mM)

Glycyrrhetinic acid 82.29
GA-1 76.5
GA-2 >200
GA-3 91.79
GA-4 116.07
GA-5 >200

Table 6. Compliance of atomic property filed score and FlexX binding energy
of Glycyrrhetinic acid, GA-1, GA-2, GA-3, GA-4 and GA-5 on Glyoxalase-I GSH
binding site.

Compound APFa score
FlexX binding
energy (kJ/mol)

Glycyrrhetinic acid (positive control) �419.617182 �25.561
GA-1 �425.82269 �16.997
GA-2 �402.04735 �9.7
GA-3 �401.184344 �7.293
GA-4 �415.679134 �21.232
GA-5 �402.136577 �10.419
aAtomic property field (APF)-based score calculated through ICM-Chemist v3.-
6a (Molsoft L.L.C., USA, licensed to CSIR-CIMAP, Lucknow, India).
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hydrogen bonds with GLO-I key amino acids ARG-38, ARG-
123 and ASN-104. Thus, it is a novel work reporting active
natural leads screened virtually using different molecular
modelling approaches and in vitro validation of predicted
results tested on triple-negative breast cancer cell lines. This
study will be helpful in early lead discovery against meta-
static breast cancers.
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